Stock Spam Analysis
نویسندگان
چکیده
Stock spam is a part of unsolicited electronic mail which wants its receiver to buy a certain share at the stock markets. As there is no direct profit for the sender of this message, impacts on the share prices seem to be the only way to generate earnings by the spam sender. To hide the information within stock spam messages from automatic processing, textual and image-based distortions are used. This thesis will to show that the automatic processing of stock spam messages is possible and the available tools from the domains of Optical Character Recognition and Information Retrieval are sufficient. In-depth analyses on different tools and methods are performed to find the best suitable ones. Thereafter the model will be implemented and a large number of messages is processed to identify stock spam messages. Finally, a descriptive analysis on the characteristics of stock spam messages and their impact to financial markets is conducted. Stock Spam ist ein Teil der unerwünschten eMail Nachrichten, der ihren Empfänger dazu bringen möchte, bestimmte Aktien über den Aktienmarkt zu kaufen. Nachdem dies keinen direkten Vorteil für den Sender bringt, scheinen Auswirkungen auf die Aktienkurse der einzige Weg zu sein, mit dem der Sender Gewinn erzielen kann. Um die Informationen in Stock Spam Nachrichten vor automatischen Auswertungen zu schützen, werden textund bildbasierte Störungen verwendet. Diese Arbeit wird zeigen, dass die automatische Verarbeitung von Stock Spam Nachrichten möglich ist und die vorhandenen Werkzeuge aus den Bereichen Optische Zeichenerkennung und Information Retrieval ausreichend sind. Es werden detaillierte Analysen über die verschiedenen Werkzeuge und Methoden durchgeführt, um diejenigen zu finden, die das beschriebene Problem am besten lösen. Danach wird das Ergebnis implementiert und eine große Zahl an Nachrichten verarbeitet um Stock Spam Nachrichten zu finden. Abschließend wird eine deskriptive Analyse der Eigenschaften von Stock Spam und dessen Auswirkung auf die Finanzmärkte durchgeführt.
منابع مشابه
A Critical Analysis of Financial Fraud Spam in English in Terms of Persuasive Strategies: Personalization, Presupposition, and Lexical Choices
The term ‘spam’ addresses unsolicited emails sent in bulk; therefore, the term‘financial fraud spam’ refers to unwanted bulk emails in which different tricks and techniques areemployed to swindle money from the recipients. Estimates show that more than 80% of worldwideemail traffic in 2011 was spam. It should be noted that while the number of daily spam emails in2002 was 2.4 billion, this numbe...
متن کاملAre individual investors influenced by the optimism and credibility of stock spam recommendations?
This study examines attention-driven investment decisions using a sample of firms essentially unknown to investors prior to becoming the target of a stock spam campaign. We show that the market reaction to spam varies predictably with the content of the spam message. Spam date returns and volume are significantly higher for stocks targeted by spam emails containing optimistic target price proje...
متن کاملThe Effect of Stock Spam on Financial Markets
Spammessages are ubiquitous and extensive interdisciplinary research has tried to come up with effective countermeasures. However, little is known about the response to unsolicited e-mail, partly because spammers do not disclose sales figures. This paper correlates incoming spam messages that promote the investment in particular equity securities with financial market data. We use multivariate ...
متن کاملUsing Text Mining to Analyze Quality Aspects of Unstructured Data: A Case Study for "stock-touting" Spam Emails
The growth in the utilization of text mining tools and techniques in the last decade has been primarily driven by the increase in the sheer volume of unstructured texts and the need to extract useful and more importantly, quality information from them. The impetus to analyse unstructured data efficiently and effectively as part of the decision making processes within an organization has further...
متن کاملUsing Text Mining to Analyze Quality Aspects of Unstructured Data: A Case Study for â•œstock-toutingâ•š Spam Emails
The growth in the utilization of text mining tools and techniques in the last decade has been primarily driven by the increase in the sheer volume of unstructured texts and the need to extract useful and more importantly, quality information from them. The impetus to analyse unstructured data efficiently and effectively as part of the decision making processes within an organization has further...
متن کامل